Rückstände aus Holzvergasungsanlagen

LfU / Elke Reichle / 06.10.2011

UWI Tagung / Augsburg

Inhalte

Ausgangspunkt

Rückstände – Arten und Anfallstellen

Untersuchung des LfU

Anlagen, Beprobungsumfang

Ergebnisse – Organische Substanz, Schwermetalle, PAK

Entsorgungshinweise

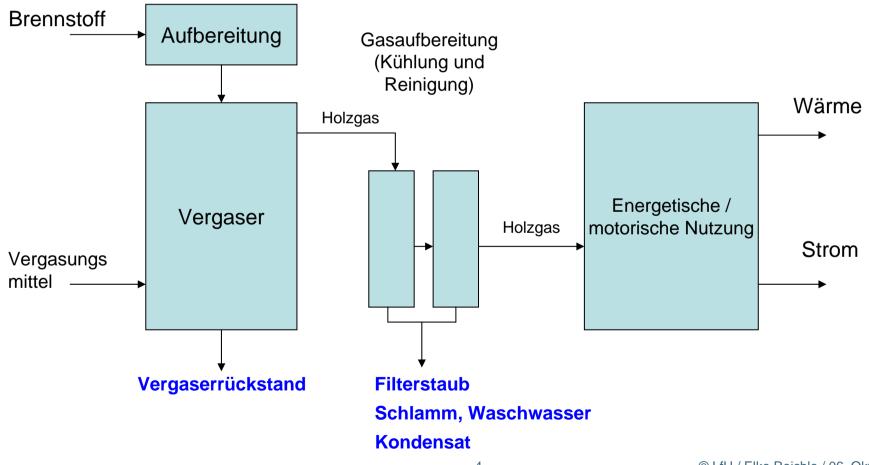
Ansatzpunkte für Optimierung

Ausgangspunkt

Immissionsschutz

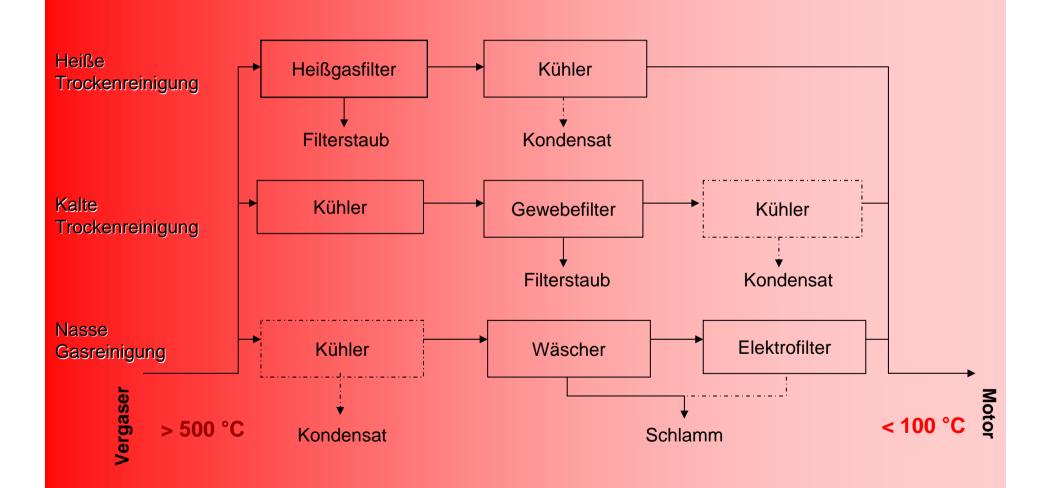
Gefahrenschutz

Entsorgungsfrage


Serienreife

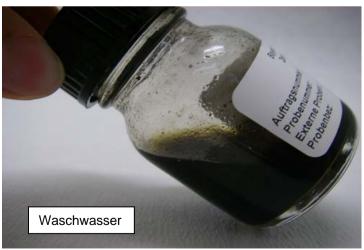
Holzvergasung

Zuverlässigkeit des Anlagenbetriebs Weiterentwicklung der Anlagentechnik



Rückstände – Arten und Anfallstellen

Verfahren der Gasaufbereitung



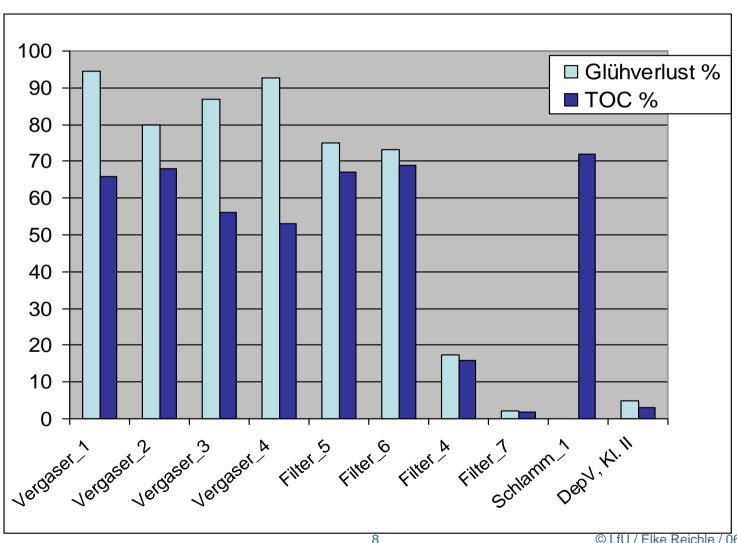
Rückstandsfraktionen (Beispiele)

Untersuchung des LfU – Beprobungsumfang

Anlagen

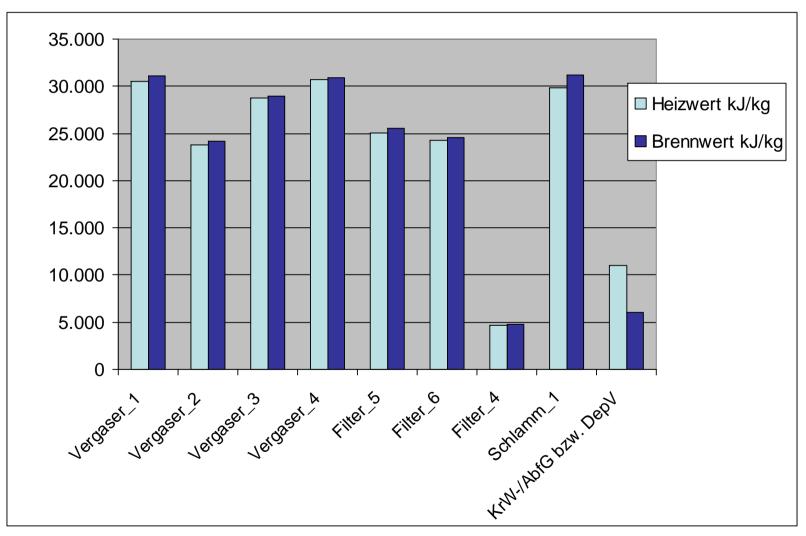
- 7 Anlagen, meist Gleichstromvergaser, Leistung zw. 30 und 300 kW_{el}
- 3 Nassreinigungs-, 3 kalte Trockenreinigungs- und 1 heißes Trockenreinigungsverfahren

Proben


 4 Vergaserrückstände, 4 Filterstäube, 1 Schlamm (1 Waschwasser, 2 Kondensate)

Analysen

- Glühverlust, TOC, Heiz-/Brennwert
- Schwermetalle (Pb, Cd, Cr, Cu, Ni, Zn, As)
- Organische Schadstoffe (PAK, einzelne Proben: PCDD/F)
 - -> Artikel M&A 3/10, http://www.muellundabfall.de/aid/mua 20100305/inhalt.html



Untersuchungsergebnisse – Glühverlust / TOC

Untersuchungsergebnisse – Heiz-/Brennwert

Zusammenfassung Ergebnisse – Glühverlust / Heizwert

Vergaserrückstände: hoher GV über 70 % bis zu 95 %,

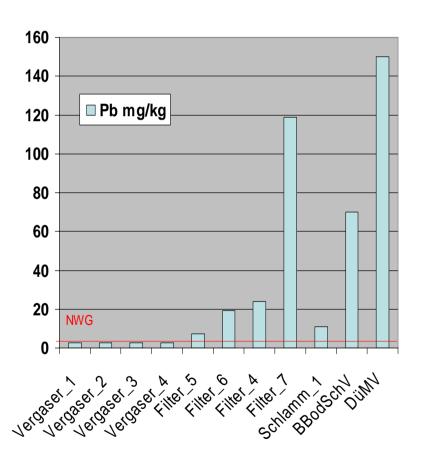
Heizwert zwischen ca. 24.000 und 31.000 kJ/kg.

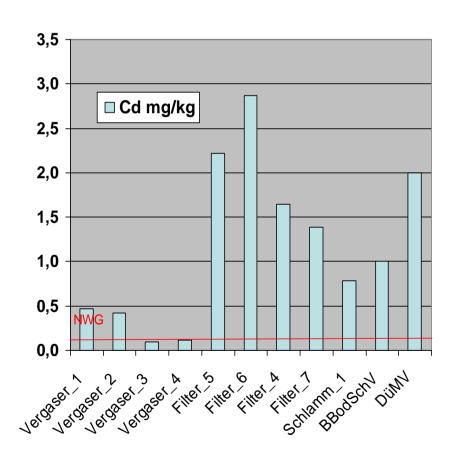
• Filterstäube: Werte variieren, Maximalwert von ca. 70 % GV und

25.000 kJ/kg Heizwert (Ausnahme : Filterstaub Heißgasfilter)

 Mindestwert für die energetische Verwertung (KrW-/AbfG) und Beurteilungswerte für Deponiefähigkeit (DepV) bei GV,TOC und Brennwert sind meist deutlich überschritten.

Geringe mineralische oder hohe unvergaste organische Anteile: Bezeichnung als Aschen - analog Aschen aus der Verbrennung von Holz - ist <u>unzutreffend</u>.


<u>Hoher</u> verbleibender <u>Energieinhalt</u> in den Rückständen (im Bereich von Braun- oder Steinkohle)



Negativer Einfluss auf den Gesamtwirkungsgrad der Anlage.

Untersuchungsergebnisse – Schwermetalle (Bsp.: Blei, Cadmium)

Zusammenfassung Ergebnisse – Schwermetalle

 In fast allen Fällen liegen Schwermetallgehalte (Pb, Cd, Cr, Cu, Ni, Zn) der Vergaserrückstände unterhalb der Werte für Filterstäube.

<u>Erklärung</u>: Bei hohen Temperaturen im Vergaserreaktor in die Gasphase übergegangene Verbindungen kondensieren auf dem Abgasweg an Flugstaubteilchen aus.

Belastung der Vergaserrückstände mit Schwermetallen spielt untergeordnete Rolle.

Untersuchte <u>Filterstäube</u> hingegen konnten im Falle von Cadmium, Nickel und Zink die <u>Grenzwerte der DüMV</u> meistens nicht einhalten.

Untersuchungsergebnisse – PAK

Zusammenfassung Ergebnisse – PAK

PAK-Gehalte <u>Vergaserrückstände</u> zwischen 8 und 53 mg/kg TS, <u>Filterstäube</u> zwischen 1.500 und 8.700 mg/kg TS, Ausnahme: Filterstaub Heißgasfilter (4 mg/kg PAK)

Vorsorgewert der BBodSchV (für Humusgehalte ≤ 8 %) von 3 mg/kg wurde von allen Rückständen überschritten.

PAK-Belastung der Filterstäube ist meist deutlich – bis zu einem Faktor 1000 – höher als Belastung der Vergaserrückstände.

Während des Vergasungs-/Pyrolysevorganges entstehen Teere

- 1. aus Hauptbestandteilen der Biomasse (Cellulose, Hemicellulose, Lignin),
- 2. durch Umsetzung bei weiterer Temperaturerhöhung in Anwesenheit von Oxidationsmitteln,
- 3. oberhalb von ca. 800°C durch Rekombinationsprozesse.

Abfallrechtliche Einstufung

Rechtsgrundlage: Abfallverzeichnis-Verordnung in Verbindung mit den Hinweisen des BMU zur Anwendung der AVV

Abfall mit einem Gehalt an PAK von mehr als 1000 mg/kg und/oder Benzo(a)pyren von mehr als 50 mg/kg ist als gefährlich einzustufen.

<u>Vergaserrückstände</u> sind (nach jetzigem Kenntnisstand) im Allgemeinen <u>keine gefährlichen Abfälle</u>.

Der Großteil der untersuchten Rückstände aus der Produktgasaufbereitung (<u>Filterstäube</u>, <u>Schlamm</u>) weist PAK-Gehalte über 1000 mg/kg auf; im Allgemeinen ist daher von einer <u>Gefährlichkeit dieser</u> <u>Abfälle</u> auszugehen.

Folge: Nachweis- bzw. Registerpflicht nach der Nachweisverordnung.

Gefahrenrelvante Parameter können neben PAK bzw. Benzo(a)pyren auch andere Stoffe, wie z. B. Benzol sowie die Eluatkriterien nach Anhang III der Hinweise des BMU sein. Sofern keine Analysen vorliegen, sind die Filterstäube dem AVV-Schlüssel 10 01 18* zuzuordnen.

nein

Rechtliche Rahmenbedingungen landwirtschaftl. Verwertung

Formal zulässiger Ausgangs-/Zuschlagsstoff?

Zulässige Ausgangsstoffe für Düngemittel (Tab. 7 DüMV)

Liste geeigneter Zuschlagstoffe (Anhang 1 BioAbfV)

Ist Schadlosigkeit gewährleistet?

Zugelassen sind Düngemittel, die... die Fruchtbarkeit des Bodens, die Gesundheit von Menschen, Haustieren und Nutzpflanzen nicht schädigen und den <u>Naturhaushalt nicht gefährden</u> (§3 Abs. 1 DüMV)

Schadstoffgrenzwerte: Anlage 2 Tabelle 1.4 DüMV

Biologischer Nutzen?

Nach § 4 Abs. 1 Nr. 2 dürfen Wirtschaftsdünger ... "nur in den Verkehr gebracht werden, wenn für die Herstellung a) als Ausgangsstoffe nur Stoffe verwendet werden, die aa) einen pflanzenbaulichen, produktions- oder anwendungstechnischen Nutzen haben oder bb) dem Bodenschutz oder der Erhaltung und Förderung der Fruchtbarkeit des Bodens dienen..."

Aufbringen von Bioabfällen und Gemischen, die andere als in Anhang 1 Nr. 1 genannte Bioabfälle enthalten, nur bei <u>Zustimmung</u> der zuständigen Behörde und Durchführung von <u>Untersuchungen auf weitere Schadstoffe</u> unter Berücksichtigung der Art, Beschaffenheit oder Herkunft der Bioabfälle zulässig (§ 6 Abs. 2 BioAbfV)

Schwermetall_Grenzwerte: §4 Abs. 3 BioAbfV


Vermischungsverbot:

Nach § 4 Abs. 1 BioAbfV: "Der Bioabfallbehandler darf Bioabfälle und Bodenmaterialien, Torf oder in Anhang 1 Nr. 2 genannte mineralische Materialien verwenden, von denen <u>in unvermischter Form</u> auf Grund ihrer Art, Beschaffenheit oder Herkunft angenommen werden kann, dass sie nach einer Behandlung die Anforderungen nach Absatz 3 (Grenzwerte) einhalten und bei denen <u>keine Anhaltspunkte für überhöhte Gehalte an</u> weiteren Schadstoffen bestehen.

Qualitativer Vergleich PAK-Werte (der untersuchten Rückstände im Hinblick auf die landwirtschaftliche Verwertung)

Quellen: Bundesweite Hintergrundwerte für Böden (LABO, 2003), Schadstoffgehalte von Komposten und Vergärungsrückständen (LfU Umwelt Spezial, 2007)

Verwertung als Düngemittel

Filterstäube, Schlamm:

Bei untersuchten Materialien mit PAK-Gehalten im Bereich zwischen 1.000 und 10.000 mg/kg ist eine <u>Verwertung als Düngemittel ausgeschlossen</u>.

(außerdem wegen erhöhter Belastung mit Schwermetallen)

Vergaserrückstände:

Belastung mit PAK deutlich niedriger, liegt jedoch ebenfalls <u>über Vorsorgewert BBodSchV</u> und deutlich über durchschnittlichen PAK-Gehalten <u>anderer Abfälle, die landwirtschaftlich verwertet werden</u> (z. B. Grüngut- oder Bioabfallkomposte).

Erhöhte PAK-Werte deuten ebenfalls auf fehlende Eignung für landwirtschaftliche Verwertung hin.

Im Einzelfall nach § 6 Abs. 2 BioabfV unter Zustimmung der Behörden (LfU, LfL) und analytischem Nachweis der Schadlosigkeit u. U. möglich.

Rahmenbedingungen energetische Verwertung

Mindest-Heizwert nach KrW-/AbfG

eine energetische Verwertung im Sinne des § 4 Abs. 4 nur zulässig, wenn der <u>Heizwert</u> des einzelnen Abfalls, ohne Vermischung mit anderen Stoffen, <u>mindestens</u> 11.000 kJ/kg beträgt

Technische Eignung

Mögliche Kriterien:

Homogenität, Heizwert, Körnung, Störstoffgehalt, Schadstoffgehalt.

Wahl der Feuerungsanlage

Zulässigkeit

a) Vergaserrückstände

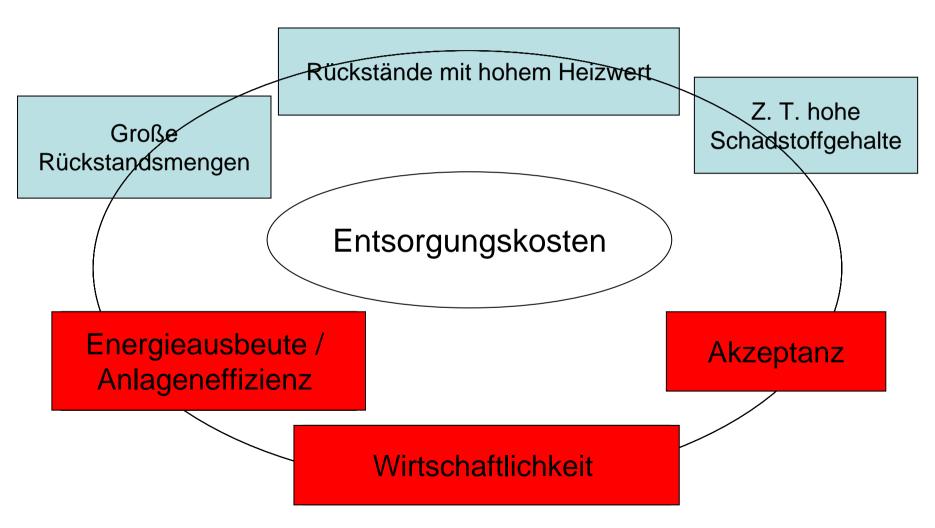
Regelbrennstoff

"Holzkohle nach DIN EN 1860" (Festlegungen u. a. zu Mindestwert Kohlenstoff, Maximalwert Asche, Körnung)

1. BlmSchV

Kein Regelbrennstoff

nur Einsatz in Anlagen zulässig, die den Anforderungen der 17. BImSchV unterliegen (z. B. HMV).


17. BlmSchV

 b) Rückstände aus Produktgasaufbereitung
 Die energetische Verwertung ist ausschließlich in Anlagen zulässig, die den Anforderungen der 17. BlmSchV unterliegen. Der Einsatz in

Kleinfeuerungsanlagen ist unzulässig, da derartige Rückstände keine Brennstoffe nach § 3 der 1. BlmSchV sind.

Weitere Schlussfolgerungen

Mögliche Ansätze für Vermeidung (Vermeidung = Verminderung der Menge und Schädlichkeit)

N	Verfahrensteil	Ziel	Prinzip	Grenzen
	Brennstoffwahl	Verringerung PAK-Gehalte Verbesserg.Vergasungsprozess	Optimierte Feuchte, Feinanteil, Holzart usw.	Verfügbarkeit, Preis des Brennstoffes
	Vergaser	Verringerung PAK-Gehalte Verringerung organischer Rest- gehalte (und somit anfallender Mengen)	Erzeugen von Holzgas mit niedrigen Teergehalten Optimieren des Vergasungs- prozesses (Temperatur, Verweilzeit, Geometrie usw.)	Thermochemischer Prozess
	Abgasreinigungs- technik	Vermeidung von flüssigen, schlammigen Rückständen	Verwendung trockener Abgasreinigungtechniken (Keramische Filter, Tuchfilter)	
	Gasaufbereitung	Vermeidung der Anreicherung von Schadstoffen durch Auskondensation Vermeidung der Entstehung von Kondensat	Gasführung oberhalb des entspr. Taupunktes	Zulässiger Temperaturbereich Abgasreinigungstechnik Wirkungsgrad, thermische Belastung Motor
	Erweiterte Anlagentechnik	Generelle Vermeidung (belasteter) Rückstände	Anlageninterne Rückführung / thermische Nachbehandlung	Eventuell erhöhte Schadstoff- emissionen Luft